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• Thm1(Strong Perfect Graph Theorem):

G is perfect iff G has no odd hole nor the complement of odd hole.

Remark “odd hole” is the induced odd cycle of length ≤ 5.

Given G, define A = A(G) as follow:

Aij =


0, ij /∈ E(G),
xij , ij ∈ E(G) and i < j,
−xji, ij ∈ E(G) and i > j,

• Thm2(Tultes/Lovàsz): G has a perfect matching iff Det(A) 6≡ 0.

Proof. Recall that

Det(A) =
∑
π

sign(π)

n∏
i=1

Aiπ(i).

For ∀ π, Eπ
Def
= {(i, π(i)) ∈ E(G), ∀ i}. So

Det(A) =
∑
π

Eπ⊆E(G)

sign(π)

n∏
i=1

Aiπ(i).

Note that Eπ is a collection of cycle in G.

Let
−→
Eπ = {

−−−−−→
(i, E(i)) : ∀ i}. Then

−→
Eπ is a collection of directed cycles.

Observation: G has a PM iff there exits π such that
−→
Eπ is a collection of even directed

cycles.

• Claim1: If G has a PM, then Det(A) 6≡ 0.

Proof. Let (i, t(i)) be a PM in G, and consider the permutation π : i 7→ t(i), t(i) 7→ i.

Then
n∏
i=1

Aiπ(i) = (−1)
n
2

∏
(i,t(i))∈M

x2it(i).

This type of monomials cannot be cancelled by others. So Det(A) 6≡ 0.

• Claim2: If G has no PM, then Det(A) ≡ 0.

Proof. By induction, for ∀ π for which
n∏
i=1

Aiπ(i) 6≡ 0,
−→
Eπ has an odd directed cycle. Let

−→
Cπ

be the odd cycle in
−→
Eπ which contains the “smallest” vertex. We will pair those non-zero

monomials
∏
Aiπ(i) in a way that one cancels the other.

For each
−→
Eπ, let f(

−→
Eπ) be the graph obtained from

−→
Eπ by reversing the direction of the arcs

in
−→
Cπ, then f(f(

−→
Eπ)) =

−→
Eπ. So we have a pairing of {

−→
Eπ : π}.

Let
−→
Eπ′ = f(

−→
Eπ). Then
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(1) sign(π) = sign(π′) ;

(2)
∏
Aiπ′(i) = (−1)|V (Cπ)|∏Aiπ(i) = (−1)

∏
Aiπ(i).

So Det(A) ≡ 0.

• Thm3: ex(n,C2t) = O(tn1+
1
t ).

Proof. Suppose not, then there exits C2t−free graph G with Ω(tn1+
1
t ) edges. So there is

G′ ⊂ G, which is bipartite and δ(G′) = Ω(tn
1
t ). Consider G′ and the BFS-tree:

Fix v ∈ V (G′), define:

L0 = {v}, L1 = N(V );

Li+1 = {w ∈ V (G′) \
i⋃

j=0
Lj : ∃ u ∈ Li, uw ∈ E(G′)} = N(Li) \

i⋃
j=0

Lj , i = 1, 2, · · · , t− 1.

• Claim1: For 1 ≤ i ≤ t, e(Li−1 ∪ Li) ≤ 4t(|Li−1|+ |Li|).
Proof. Suppose not, then G′(Li−1 ∪ Li) has a bipartite G0 with δ(G0) ≥ 4t. So G0 has a
cycle C of length ≥ 4t, which is even. Assume C = x1-x2 · · · -x4t · · · -x2s-x1.

Lemma: Let C be a cycle with an arc and V (C) = X ∪ Y (X ∩ Y = ∅), then for
2 ≤ 2i ≤ 1

2 |C|, there exits an X-Y path of length 2i. (X-Y path is a path of C from x ∈ X
to y ∈ Y )

Let T ′ ⊂ T be the minimal subtree containing all Li−1 ∩ C. Since T ′ is minimal, T ′ has at
least 2 branches, one of which is B1.

Let X = B1∩C, Y = C\X. ∀ a ∈ X, b ∈ Y ∩Li−1,∃ a-b path of length 2h ≤ 2(t−1).(Assume
h is the height of T ′) Pick 2i such that 2i+2h = 2t. By lemma, there exitsX-Y path P in C of
length 2i from x to y. Since P is of even, x ∈ X implies that y ∈ Y ∩Li−1 = T ′∩Li−1−B1.
But in T ′, ∃ x-y path Q of length 2h. So P ∪ Q is a cycle of length 2i + 2h = 2t. A
contradiction!

• Claim2: |Li+1| ≥ |Li|Ω(n
1
t )

Proof. We have:

(1) e(Li−1 ∪ Li) + e(Li ∪ Li−1) =
∑
v∈Li

dG′(v) ≥ |Li|Ω(tn
1
t );

(2) e(Li−1 ∪ Li) ≤ 4t(|Li−1|+ |Li|);
(3) e(Li ∪ Li+1) ≤ 4t(|Li|+ |Li+1|).

So 4t(|Li−1|+2|Li|+ |Li+1|) ≥ |Li|Ω(tn
1
t )⇒ |Li−1|+2|Li|+ |Li+1| ≥ |Li|Ω(tn

1
t )⇒ |Li+1| ≥

|Li|Ω(tn
1
t ).

It’s done as |L(t)| = Ω(n).
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