Combinatorial Networks May 20th-21st, Thursday

• Thm1(Strong Perfect Graph Theorem):

G is perfect iff G has no odd hole nor the complement of odd hole.

Remark "odd hole" is the induced odd cycle of length ≤ 5 .

Given G, define A = A(G) as follow:

$$A_{ij} = \begin{cases} 0, & ij \notin E(G), \\ x_{ij}, & ij \in E(G) \text{ and } i < j, \\ -x_{ji}, & ij \in E(G) \text{ and } i > j, \end{cases}$$

• Thm2(Tultes/Lovàsz): G has a perfect matching iff $Det(A) \not\equiv 0$.

Proof. Recall that

$$Det(A) = \sum_{\pi} sign(\pi) \prod_{i=1}^{n} A_{i\pi(i)}.$$

For $\forall \pi, E_{\pi} \stackrel{\text{Def}}{=} \{(i, \pi(i)) \in E(G), \forall i\}$. So

$$Det(A) = \sum_{\substack{\pi \\ E_{\pi} \subseteq E(G)}} sign(\pi) \prod_{i=1}^{n} A_{i\pi(i)}.$$

Note that E_{π} is a collection of cycle in G.

Let $\overrightarrow{E_{\pi}} = \{ \overrightarrow{(i, E(i))} : \forall i \}$. Then $\overrightarrow{E_{\pi}}$ is a collection of directed cycles.

Observation: G has a PM iff there exits π such that $\overrightarrow{E_{\pi}}$ is a collection of even directed cycles.

• Claim1: If G has a PM, then $Det(A) \not\equiv 0$.

Proof. Let (i, t(i)) be a PM in G, and consider the permutation $\pi : i \mapsto t(i), t(i) \mapsto i$. Then

$$\prod_{i=1}^{n} A_{i\pi(i)} = (-1)^{\frac{n}{2}} \prod_{(i,t(i))\in M} x_{it(i)}^{2}.$$

This type of monomials cannot be cancelled by others. So $Det(A) \not\equiv 0$.

• Claim2: If G has no PM, then $Det(A) \equiv 0$.

Proof. By induction, for $\forall \pi$ for which $\prod_{i=1}^n A_{i\pi(i)} \not\equiv 0$, $\overrightarrow{E_{\pi}}$ has an odd directed cycle. Let $\overrightarrow{C_{\pi}}$

be the odd cycle in $\overrightarrow{E_{\pi}}$ which contains the "smallest" vertex. We will pair those non-zero monomials $\prod A_{i\pi(i)}$ in a way that one cancels the other.

For each $\overrightarrow{E_{\pi}}$, let $f(\overrightarrow{E_{\pi}})$ be the graph obtained from $\overrightarrow{E_{\pi}}$ by reversing the direction of the arcs in $\overrightarrow{C_{\pi}}$, then $f(f(\overrightarrow{E_{\pi}})) = \overrightarrow{E_{\pi}}$. So we have a pairing of $\{\overrightarrow{E_{\pi}} : \pi\}$.

Let
$$\overrightarrow{E_{\pi'}} = f(\overrightarrow{E_{\pi}})$$
. Then

(1)
$$sign(\pi) = sign(\pi')$$
;

(2)
$$\prod A_{i\pi'(i)} = (-1)^{|V(C_{\pi})|} \prod A_{i\pi(i)} = (-1) \prod A_{i\pi(i)}$$
.

So
$$Det(A) \equiv 0$$
.

• Thm3: $ex(n, C_{2t}) = O(tn^{1+\frac{1}{t}}).$

Proof. Suppose not, then there exits C_{2t} -free graph G with $\Omega(tn^{1+\frac{1}{t}})$ edges. So there is $G' \subset G$, which is bipartite and $\delta(G') = \Omega(tn^{\frac{1}{t}})$. Consider G' and the BFS-tree:

Fix $v \in V(G')$, define:

$$L_0 = \{v\}, L_1 = N(V);$$

$$L_{i+1} = \{ w \in V(G') \setminus \bigcup_{j=0}^{i} L_j : \exists \ u \in L_i, uw \in E(G') \} = N(L_i) \setminus \bigcup_{j=0}^{i} L_j, \ i = 1, 2, \dots, t-1.$$

• Claim1: For $1 \le i \le t$, $e(L_{i-1} \cup L_i) \le 4t(|L_{i-1}| + |L_i|)$.

Proof. Suppose not, then $G'(L_{i-1} \cup L_i)$ has a bipartite G_0 with $\delta(G_0) \geq 4t$. So G_0 has a cycle C of length $\geq 4t$, which is even. Assume $C = x_1 - x_2 \cdots - x_{4t} \cdots - x_{2s} - x_1$.

Lemma: Let C be a cycle with an arc and $V(C) = X \cup Y$ $(X \cap Y = \emptyset)$, then for $2 \le 2i \le \frac{1}{2}|C|$, there exits an X-Y path of length 2i. (X-Y path is a path of C from $x \in X$ to $y \in Y$)

Let $T' \subset T$ be the minimal subtree containing all $L_{i-1} \cap C$. Since T' is minimal, T' has at least 2 branches, one of which is B_1 .

Let $X = B_1 \cap C$, $Y = C \setminus X$. $\forall a \in X, b \in Y \cap L_{i-1}, \exists a\text{-}b \text{ path of length } 2h \leq 2(t-1)$.(Assume h is the height of T') Pick 2i such that 2i+2h=2t. By lemma, there exits X-Y path P in C of length 2i from x to y. Since P is of even, $x \in X$ implies that $y \in Y \cap L_{i-1} = T' \cap L_{i-1} - B_1$. But in $T', \exists x\text{-}y$ path Q of length 2h. So $P \cup Q$ is a cycle of length 2i + 2h = 2t. A contradiction!

• Claim2: $|L_{i+1}| \ge |L_i|\Omega(n^{\frac{1}{t}})$

Proof. We have:

(1)
$$e(L_{i-1} \cup L_i) + e(L_i \cup L_{i-1}) = \sum_{v \in L_i} d_{G'}(v) \ge |L_i|\Omega(tn^{\frac{1}{t}});$$

(2)
$$e(L_{i-1} \cup L_i) \le 4t(|L_{i-1}| + |L_i|);$$

(3)
$$e(L_i \cup L_{i+1}) \le 4t(|L_i| + |L_{i+1}|).$$

So $4t(|L_{i-1}|+2|L_i|+|L_{i+1}|) \ge |L_i|\Omega(tn^{\frac{1}{t}}) \Rightarrow |L_{i-1}|+2|L_i|+|L_{i+1}| \ge |L_i|\Omega(tn^{\frac{1}{t}}) \Rightarrow |L_{i+1}| \ge |L_i|\Omega(tn^{\frac{1}{t}}).$

It's done as $|L(t)| = \Omega(n)$.